UP Board Important Questions Mathematics Class XII [Set-3]

  CBSE » CBSE Sample Papers » Class XI » Year 2008 You are here

UP Board Important Question
Mathematics (Trigonometric Equations)
Class – XII
[Set-3]

निम्निलिखित समीकरण को हल करके θ के व्यापक मान (Comprehensive Value) ज्ञात कीजिये |

Q1. √3.tanθ – 1 =0

Solution:

     √3.tanθ – 1 =0

                       => √3.tanθ = 1

                       => tanθ = 1/√3

                       => tanθ = tanπ/6

So θ of Comprehensive Value = nπ + π/6

Q2. √2 . sinθ – 1 = 0

Q3. cosθ = √3/2

Solution:

  cosθ = √3/2

          => cosθ = cosπ/6

So θ of Comprehensive Value = 2nπ ± π/3

Q4. cos2θ = 1/4

Q5. cos2θ = cos2θ

Solution:

          => cos2θ = cos2θ

          => 2 cos2θ - 1 = cos2θ

          => cos2θ - 1 = 0

          => cos2θ = 12

          => cos2θ = cos20

So θ of Comprehensive Value = nπ ± 0 = nπ

Q6. cos2θ = 1/2

Q7. 2 (cos2θ - sin2θ) = 1

Solution:

          => 2 (cos2θ - sin2θ) = 1

          => cos2θ - sin2θ = ½

          => cos2θ = 1/2

          => cos2θ = cosπ/3

          => 2θ = 2nπ ± π/3

So θ of Comprehensive Value = nπ ± π/6

Q8. tanθ = cotθ

Solution:

          => tanθ = cotθ

          => tanθ = 1/ tanθ

          => tan2θ = 1

          => tan2θ = 12

          => tan2θ = tan2 π/4

So θ of Comprehensive Value = nπ ± π/4

Q9. cos2θ – sinθ . cosθ – ½ = 0

Solution:

          => cos2θ – sinθ . cosθ – ½ = 0

          => 2cos2θ – 2sinθ . cosθ - 1 = 0

          => (2cos2θ – 1) – 2sinθ . cosθ = 0

          => cos2θ – sin2θ = 0

          => cos2θ = sin2θ

          => sin2θ/ cos2θ = 1

          => tan2θ = tanπ/4

          => 2θ = nπ ± π/4

So θ of Comprehensive Value = nπ/2 ± π/8

Q10. 1 + cotθ = cosecθ

Q11. √2 . (sinθ + cosθ) = 1

Q12. tanθ + √2 . secθ = 1

Q13. sin2θ – 2 cosθ + ¼ = 0

Q14. 2 sin2θ + 3 cosθ = 0

Solution:

          => 2 sin2θ + 3 cosθ = 0

          => 2 (1 - cos2θ) + 3 cosθ = 0

          => 2 – 2cos2θ + 3 cosθ = 0

          => 2cos2θ - 3 cosθ - 2= 0

          => 2cos2θ - 4cosθ + cosθ - 2= 0

          => 2 cosθ (cosθ – 2) + (cosθ – 2)= 0

          => (cosθ – 2) (2cosθ + 1) = 0

          => cosθ – 2 = 0 OR 2cosθ + 1 = 0

If cosθ – 2 = 0 then cosθ = 2 > 1

But cosθ = 2 is invalid Because value of cosθ can’t grater then 1.

There for 2cosθ + 1 = 0 => cosθ = - 1/2 => cosθ = cos2π/3

So θ of Comprehensive Value = 2nπ ± 2π/3

Q15. 2 cos2θ = 1 + sinθ