
 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

Q1:
Discuss the concept of computational granularity and communication
latency. Further, discuss how the two concepts are related at various
levels, e.g., instruction level, loop level, procedure level etc.

Ans:

Concept of computational granularity and communication latency: granularity
refers to the amount of computation done in parallel relative to the size of the
whole program. Granularity is a qualitative measure of the ratio of computation
to communication. According to granularity of system, parallel processing
system is divided into two groups:

i. Five grain system
ii. Coarse grain system

In five grained system parallel parts are relatively small and that means high
communication overhead.

In coarse grain system parallel parts are relatively large, that mean more
computation and less computation.

If granularity is too fine, it is possible that the overhead required for the
communication and synchronization between task takes longer than the
computation. On the other hand, in coarse gain parallel system, relatively large
amount of computation work is done. They have high computation work to
communication ration and imply more opportunity for performance increase.

Various levels:

i. Instruction level: it refers the situation when different instructions of
program are executed by different processing elements. Most processes
have parallel execution of micro steps of instructions with in the same
pipe. The idea of executing a number of instructions of a program in
parallel by scheduling them on a single processor has been a major
driving force in the design of recent processor.

ii. Loop level: consecutive loop iteration is the candidates for parallel

execution. However, data dependencies between subsequent iteration
may restrict parallel execution at loop level.

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

iii. Procedure level: parallelism is available in the form of parallel
executable procedure. In this case, the design of algorithm plays a
major role. For example, each thread in java can be spawned to run a
function or method.

Program Level: this is usually the responsibility of operating system which runs
processes concurrently. Different program are obviously, independent of each
other. So parallelism can be extracted by operating system at this level.

Q2:
Using Bernstein’s conditions, detect maximum parallelism between the
instructions of the following code:
P1: X = Y * Z
P2: P = Q + X
P3: R = T + X
P4: X = S + P
P5: V = Q / Z

Ans:

Detection of parallelism by using Bernstein condition:

This condition based on the following tow sets of variable:

i. The Read set or input set R1that consists of memory locations read by
the statement of Instruction I1,

ii. The Write set or output set W1that consists of memory locations written
into by instruction I1,

The set R1 & W1 are not disjoint as the same locations are used for reading and
writing by S1.

Statement is parallel or not:-

i. Location in R1 from which S1 reads and the locations W2 onto which S2

writes must be mutually exclusive, that means S1 does not read from
any memory location onto which S2 writes. It can be denoted as:- R1

∩W2 = empty

ii. Similarly, location on R2 from which S2 read and the locations W1 onto

which S1 writes must be mutually exclusive. That means S2 does not

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

read from any memory location onto which S1 writes. It can be denoted
as: R2∩ W1=empty.

iii. The memory locations W1 and W2 onto which S1 and S2 write should not

be read by S1 and S2 that means R1 and R2 should be independent of W1
and W2. It can be denoted as: R2 ∩ W1 =empty.

iv. The memory location W1 and W2 onto which S1 and S2 write should not

be read by S1 and S2 that means R1 and R2 should be independent of W1

and W2. It can be denoted as: W1 ∩ W2 =empty.
P1: X=Y*Z
P2: P=Q+X
P3: R=T+X
P4: X=S+P
P5: V=Q/Z

Read set and Write set of P1, P2, P3,, P4, P5

 R1= {Y, Z} W1= {X}

 R2= {Q, X} W2= {P}

 R3= {T, X} W3= {R}

 R4= {S, P} W4= {X}

 R5= {Q, Z} W5= {V}

Let’s find whether P and P are parallel or not:-

R1 W2= , R2 W1= , W1 W2=

Here P1 and P2 are not independent of each other. So P1 is not parallel to P2

Now see P1 and P3 are parallel or not:
R1 W3=empty, W1 R3 is not empty.

So P1 not parallel to P3

P1 and P4 parallel or not:
R1 W4=empty, R4 W1=empty, W1 W4=empty

So P1 and P4 are not parallel

P1 and P5 parallel or not:
R1 W5=empty, R5 W1=empty, W1 W4 is not empty

So P1 and P5 are independent of each other. So P1 and P5 are parallel

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

Now P2 and P3 are parallel or not:
R2 W3=empty, R3 W2= empty, W2 W3=empty

So P2 and P3 are parallel

P2 and P4 are parallel or not:
R2 W4 is not empty, R5 W5=empty W2 W5=empty

So P2 is parallel to P5

P3 and P4:
R3 W 4 is not empty, So P3 not parallel to P4

P3 and P5:
R3 W5=empty, R5 W3=empty, W3 W5=empty. So P3 is parallel to P5

P4 and P5:
R4 W5=empty, R5 W4=empty, W4 W5=empty. So P4 is parallel to P5.

So result is P1, P2 and P5 are parallel.

Q3:
(i) Obtain Perfect Shuffle Permutation network of 32 nodes.

Ans :

Perfect shuffle permutation Consider N objects each represented by 4 bits, 4

number say Xn-1, Xn-2, X0. The perfect shuffle of this N object 4 expressed as.

Xn-1, Xn-2, X0 = Xn-2, X0, Xn-1,

This means that perfect shuffle is obtained by rotating the address by 1 bit left.

Shuffle permutation of 32 Nodes:

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 1 1
0 0 1 0 0 0 0 1 0 0
0 0 1 0 1 0 0 1 0 1
0 0 1 1 0 0 0 1 1 0
0 0 1 1 1 0 0 1 1 1
0 1 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 1
0 1 0 1 0 0 1 0 1 0
0 1 0 1 1 0 1 0 1 1
0 1 1 0 0 0 1 1 0 0
0 1 1 0 1 0 1 1 0 1
0 1 1 1 0 0 1 1 1 0
0 1 1 1 1 0 1 1 1 1
1 0 0 0 0 1 0 0 0 0
1 0 0 0 1 1 0 0 0 1
1 0 0 1 0 1 0 0 1 0
1 0 0 1 1 1 0 0 1 1
1 0 1 0 0 1 0 1 0 0
1 0 1 0 1 1 0 1 0 1
1 0 1 1 0 1 0 1 1 0
1 0 1 1 1 1 0 1 1 1
1 1 0 0 0 1 1 0 0 0
1 1 0 0 1 1 1 0 0 1
1 1 0 1 0 1 1 0 1 0
1 1 0 1 1 1 1 0 1 1
1 1 1 0 0 1 1 1 0 0
1 1 1 0 1 1 1 1 0 1
1 1 1 1 0 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

3:
(ii) Discuss, along with diagrams, close network with 4x4 cross point
switches.

Ans :

Close Network:

It is a non-blocking network and provides full connectivity like crossbar
network but it requires significantly less number of switches. The
organization

of close network is shown below using 4 X 4 cross point switches:

Organization of Close Network

Q4:
Discuss, along with diagram, an arithmetic pipeline for Multiplication of
two 8-digit fixed numbers.

Ans:

Arithmetic Pipelining for fixed numbers Multiplication of 8 digit fixed numbers

1 1
. 2
x z

1 1
2 2
x y

1 1
2 2
m p

1 1
. 2
x z

1 1
2 2
x y

1 1
2 2
m p

1 1
. 2
x z

1 1
2 2
x y

1 1
2 2
m p

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

X7 X6 X5 X4 X3 X2 X1 X0 = X
Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 = Y
X7Y0 X6Y0 X5Y0 X4Y0 X3Y0 X2Y0 X1Y0 X0Y0 = P1
X7Y1 X6Y1 X5Y1 X4Y1 X3Y1 X2Y1 X1Y1 X0Y1 = P2
X7Y2 X6Y2 X5Y2 X4Y2 X3Y2 X2Y2 X1Y2 X0Y2 = P3
X7Y3 X6Y3 X5Y3 X4Y3 X3Y3 X2Y3 X1Y3 X0Y3 = P4
X7Y4 X6Y4 X5Y4 X4Y4 X3Y4 X2Y4 X1Y4 X0Y4 = P5
X7Y5 X6Y5 X5Y5 X4Y5 X3Y5 X2Y5 X1Y5 X0Y5 = P6
X7Y6 X6Y6 X5Y6 X4Y6 X3Y6 X2Y6 X1Y6 X0Y6 = P7
X7Y7 X6Y7 X5Y7 X4Y7 X3Y7 X2Y7 X1Y7 X0Y7 = P8

Following stages for pipelining:

1. The first stage generates the partial product of number, which form the six
rows of shifted multiplicands.

2. In second step, the eight are given to the two carry save address merging

six numbers.

3. Third step: a single CSA merging the number into 5 numbers.

4. Similarly in next step 5 numbers into 4 number and 4 number into 3.

5. In last step, two numbers are added through a carry propagation adder
(CPA) to get the final result. X & Y are two 8 digit fixed number so
arithmetic pipeline for multiplication of two 8 digit fixed number is given
below:

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

Q5:
Define Bitonic sequence. Discuss a Bitonic sorting algorithm. Further,
using the algorithm, sort the following sequence:

bds

Shifted Multiplicand Generator

bds

CSA1 CSA2

bds

CSA6

CSA3

CSA4

CSA5

bds

bds

bds

bds

bds

CPA

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

15,17,19,20,25,27,29,34,37,18,16,13,10,8,7,6,2

Ans:

Biotic Sequence: - Consider a sequence X=X0, X1, X2….Xn-1 such that
conditions:

1. Either X0, X1, X2….Xi is monotonically increasing sequence and Xi+1,
Xi+2….Xn-1 is monotonically decreasing sequence.

2. There exist cyclic shift of the sequence X0, X1, X2….Xn-1 such that the
resulting sequence satisfies the condition 1.

Algorithm for sorting the bitonic sequence:

Sort_Bitonic(X)
1. The sequence i.e. X is transferred on the input lines of the combinational

circuit which consists of various set of comparators.

2. The sequence X is splitted into two sub bitonic called bitonic split.

3. Recursively execute the bitonic split on the subsequence i.e. Y and Z until

the size of subsequence reaches to a level as 1

4. This sorted sequence is achieved after this stage on the output lines.
Now sorting of given sequence:

15,17,19,20,25,27,29,34,37,18,16,13,10,8,7,6,2

This list is to be sorted in ascending order. To sort this list, in the first stage
comparator or order 2 will be used.

Similarly 2nd stage will consist of 4, input comp.

3rd stage 8 input comparator

And 4th stage 16 input comparator.

2 15
17

+(BM2)

15
17 6

8 19
20

-(BM2)

20
19

+(BM4)

15
17
19
20 10

13 25
27

+(BM2)

25
27

34
29

+(BM8)

15
17
19
20
25
27

 15

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

16 29
34

-(BM2)

34
29

-(BM4) 27
25

29
34 17

18 37
18

+(BM2)

18
37 19

20 16
13

-(BM2)

16
13

+(BM4)

13
16
18
37 25

27 10
8

+(BM2)

10
8 29

34 6
2

-(BM2)

6
2

-(BM4)

10
8
6
2

-(BM8)

37
18
16
13
10
8
6
2

+(BM16)

37

Q6:
Discuss the following with respect to a parallel virtual machine:

(i) Compiling and running of a PVM program

Ans:

Compiling and running of PVM program.

To compile the program change to the directory PVM/lib/archname,
Where archname is the architecture name of your computer, then the following
command

cc program.c -lpvm3 -oprgram,

will compile a program called ‘program.c’. After compiling, we must put the
executable file in the directory pvm3/bin/ARCH. Also, we need to compile the
program separately for every architecture in virtual machine. In case we use
dynamic groups, we should also add –lgpvm to the compile command. The
executable file can be run. To do these first run PVM. After PVM is running,
executable file may be run from the UNIX command line, like any other program.

PVM supplier an architecture independent make, aimk, which automatically
determines PVM_ARCH and links any operating system specific libraries to your
application to compile the C

% aimk makser.c

Now, form one window, start PVM and configure some host. In other window
change directory to $HOME/pvm3/bin/PVM_ARCH and type % master.

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

It will ask for a number of task to be executed then type number of task.

Q6:
(ii) Message passing

Ans:

Message passing wrt PVM:-

PVM communication model provides asynchronous blocking send
asynchronous blocking receive, and non-blocking send return as soon as the
send buffer is free for reuse and an asynchronous send does not depend on
the receiver calling a matching receive before the send can return there is
option in PVM that data be transferred directly from task to task. In this case,
if the message is large the sender may be block until the receive has called a
matching receive.

A non-blocking receive immediately returns with either the data or a flag that
the data has not arrived, while a blocking receive returns only when the data
is in the receive buffer. In addition to these point to point communication
functions, the model supports the multicast to a set of tasks and the
broadcast to a user-defined group of task. There are also functions to perform
global max, global sum etc. access a used defined group of task.

PVM guarantees that the message order is preserved if task1 sends message
A to task and then task1 send message B to task 2 message A will arrive at
task 2 before message B. moreover, if both the message arrive before task2,
does a receive, then a will always return message A.

 Int bufid-pvm_mkbuf(int encoding)

Create a new message buffer, encoding specifies the buffer’s encoding set.

Q6:
(iii) Creating and managing Dynamic process groups

Ans:

Create and mange dynamic groups:-

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

The separate library lib g pvm 3 a must be linked with a user program that
makes use of any of the group fund group management work is handled by a
group server that is automatically started when the first group function is
invoked.

We are giving some routines that handle dynamic process:-

Int pvm_joingroup(char *group)

Emols the calling process in a named group. Group is a group name of an
existing group. Returns instance number. Instance number run form 0 to the
number of group members minus 1. in PVM3, a task can join multiple
groups.

• int info=pvm_lvgroup(char *group)

Unenrolls the calling process from a named group.

• int pvm_gettid(char *group, int inum)

Return the tid of the process identified by a group name and instance
number.

• int pvm_getinst(char *group, int tid)

Return the instance number in a group of a PVM process.

• int size=pvm_gsize(char *group)

Return the number of member presently in the named group.

• int pvm_barrier(char *group, int count)

Block the calling process until all the process in a group have called it. Count
species the number of group members that must call pvm_barrier before they
are all released.

int info = pvm_reduce(void (*func)(), void *data, int count, int datatype, int
msgtag, char *group, int rootginst)

Q7:
Discuss important environment features for parallel programming.

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

Ans:

The parallel programming environment consists of an editor, a debugger,
performance, evaluator and program visualize for enhancing the output of
parallel computation. All programming environment have these tools in one form
or the other. Based on the feature of the available tool sets the programming
environment are classified as basic, limited and well developed.

a. Basic environment provides simple facilities for program tracing and
debugging.

b. The limited integration facilities provide some additional tools for parallel

debugger and performance evaluation.

c. Well developed environment provide most advanced tools of debugging
programs, for textual graphics interaction and for parallel graphics
handling.

There are certain parallel overhead associated with parallel computing. The
parallel overhead is the amount of time required to co-ordinate parallel tasks as
opposed to doing useful work. These include the following factors:-

i. Task start up time
ii. Synchronization.
iii. Data communication.

Besides this hardware overhead, these are certain software overhead imposed by
parallel compiler, libraries, tools and operating systems.

Parallel programming languages are developed for parallel computer
environments. These are developed by either introducing new languages or by
modifying existing language. Normally, the language extension approach is
preferred by most computer design. This reduce compatibility problem. High
level parallel constructs were added to FORTRAN and C to make these languages
suitable for parallel computers. Beside these, optimizing compilers are designed
to automatically detect the parallelism in program code and convert the code to
parallel code.

Q8:
Discuss relative merits and demerits of various laws for measuring speed up
performance vis-à-vis to a parallel computer algorithm system

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

Ans:

Merits and demerits of various laws for measuring speed up performances;-

1. Amdahl’s Law:-

The speed up factor help us in knowing the relative gain achieved in shifting
the execution of a task from sequential computer to parallel computer and
the performance does not increase linearly with the increase in number of
processor.

Let us consider a problem say P, which has to be solved using a parallel
computer. According to Amdahl’s law, there are mainly two types of
operations; therefore, the problem will have some sequential operation and
some parallel operations. We already know that it requires T (1) amount of
time to execute a problem using a sequential machine and sequential
algorithm. The time to compute the sequential operation is a fraction α (α<=1)
of the total execution time i.e. T (1) and the time to computer the parallel
operations is (1- α), therefore S (N) can be calculated as under:-

 S (N) =T (1)/T (N)
 S (N) =T (1)/ (α*T (1) + (1- α)*T (1)/N)

 Dividing by T (1)

 S (N) =1/ (α+ (1- α)/N)
Remember the value of α is between 0 and 1. Now put some values of number
of processors, we find that the S (N) keeps on decreasing with increase in the
value of α.

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

Speed v/s No. Of Processors

Speed up Factor S (N) v/s α

Outcomes of analysis of Amdahl’s Law:-

1. To optimize the performance of parallel computers modifies compiler need

to be developed which aim to reduce the number of sequential operation
pertaining to the reaction α.

2. Manufacturers of parallel computers were discouraged from

manufacturing large scale machine having millions of processors.

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

One major shortcoming identified in Amdahl’s law: according to Amdahl’s law
the problem size is always fixed and of sequential operations remains mainly
same.

2. Gusta fson’s Law:-

There are menu applications which require that accuracy of the resultant
output should be high. In the present situation the computing power has
increased substantially due to increase in number of processors attached to
parallel computer. Thus it is possible to increase the size of the problem. The
graph of speed up:

S (N) = α +N*(1- α)
S (N) = N- α*(N-1)

Thus decrease is because of overhead or sizes caused by inter processor
communication.

3. Sun and Ni’s Law:-

The Sun and Ni’s Law is a generalization of Amdahl’s Law as well as
Custafson’s Law. The fundamental concept of underlying the Sunand Ni’s
Law is to find the solution to a problem with a maximum size along with
limited requirement of memory. Now a day, there are many applications
which are bounded by the memory in contrast to the processing speed.

In a multiple based parallel computer, each processor has an independent
small memory. In order to solve a problem, normally the problem is divided
into sub problems and distributed to various processors. It may be noted that
size of sub-problem should be in proportion with size of the independent local
memory available with the processor. The size of the problem can be

 http://www.boardguess.com

This article is the property of BoardGuess.com. Any unauthorized use is strictly prohibited. Please visit

http://www.boardguess.com for more information.

increased further such that the memory could be utilized. This technique
assists in generating more accurate solution as the problem size has been
increased.

